Green Synthesis of Chitosan-Functionalized Zinc Oxide Nanoparticles - A Novel Antimicrobial Agent
Keywords:
Green synthesis, Chitosan-functionalized ZnO nanoparticles, Antimicrobial activity, Guava extractAbstract
This study presents a green synthesis method for Chitosan-functionalized zinc oxide (ZnO) nanoparticles using guava (Psidium guajava) leaf extract and Chitosan, a natural polymer derived from chitin. The eco-friendly approach leverages guava extract as a reducing and stabilizing agent and Chitosan to enhance nanoparticle stability and bioactivity. Synthesized ZnO nanoparticles exhibited a crystalline structure with sizes ranging from 14–28 nm, confirmed by XRD analysis, and a characteristic UV-Visible absorption peak at 335 nm. The antimicrobial activity of the nanoparticles was evaluated against E. coli, S. aureus, and S. enterica using a disc diffusion assay. Significant inhibition zones were observed, particularly at higher nanoparticle concentrations, indicating strong antibacterial potential. The mechanism involves oxidative stress induction and bacterial membrane disruption. This green synthesis approach provides an effective and sustainable alternative to combat antimicrobial resistance, aligning with green chemistry principles to minimize environmental impact.
References
[1] Abdelrahim, S. I., Almagboul, A. Z., Omer, M. E. A., & Elegami, A. (2002). Antimicrobial activity of Psidium guajava L. Fitoterapia, 73(7-8), 713-715.
[2] Abdel-Mawgoud, A. M. R., Tantawy, A. S., El-Nemr, M. A., & Sassine, Y. N. (2010). Growth and yield responses of strawberry plants to chitosan application. European Journal of Scientific Research, 39(1), 170-177.
[3] Anastas, P. T., & Warner, J. C. (2000). Green chemistry: theory and practice. Oxford university press.
[4] Arumugam, A., Karthikeyan, C., Hameed, A. S. H., Gopinath, K., Gowri, S., & Karthika, V. (2015). Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Materials Science and Engineering: C, 49, 408-415.
[5] Beveridge, T. J. (1999). Structures of gram-negative cell walls and their derived membrane vesicles. Journal of bacteriology, 181(16), 4725-4733.
[6] Burkill H. M.,(1997) The Useful Plants of West Tropical Africa, 2nd edition
[7] Chen, R. H., Domard, A., Muzzarelli, R. A., Tokura, S., & Wang, D. M. (2011). Advances in chitin/chitosan science and their applications. Carbohydrate polymers, 2(84), 695.
[8] Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews, 104(1), 293-346.
[9] Dhillon, G. S., Brar, S. K., Kaur, S., & Verma, M. (2012). Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Critical reviews in biotechnology, 32(1), 49-73.
[10] Durand, G. A., Raoult, D., & Dubourg, G. (2019). Antibiotic discovery: history, methods and perspectives. International journal of antimicrobial agents, 53(4), 371-382.
[11] Fleming, A. (1929). On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. British journal of experimental pathology, 10(3), 226.
[12] Jaiarj, P., Khoohaswan, P., Wongkrajang, Y., Peungvicha, P., Suriyawong, P., Saraya, M. S., & Ruangsomboon, O. (1999). Anticough and antimicrobial activities of Psidium guajava Linn. leaf extract. Journal of Ethnopharmacology, 67(2), 203-212.
[13] Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic chemistry and applications, 2018(1), 1062562.
[14] Kaushik N, Thakkar MS, Snehit S, Mhatre MS, Rasesh Y, Parikh MS (2010) Biological synthesis of metallic nanoparticles. NanomedNanotechnolBiol Med 6:257–262
[15] Kingston, W. (2008). Irish contributions to the origins of antibiotics. Irish journal of medical science, 177, 87-92.
[16] Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International journal of food microbiology, 144(1), 51-63.
[17] Korbekandi, H., Iravani, S., & Abbasi, S. (2009). Production of nanoparticles using organisms. Critical reviews in biotechnology, 29(4), 279-306.
[18] Bogunia-Kubik, K., & Sugisaka, M. (2002). From molecular biology to nanotechnology and nanomedicine. Biosystems, 65(2-3), 123-138.
[19] Kumariya, R., Sood, S. K., Rajput, Y. S., Saini, N., & Garsa, A. K. (2015). Increased membrane surface positive charge and altered membrane fluidity leads to cationic antimicrobial peptide resistance in Enterococcus faecalis. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848(6), 1367-1375.
[20] Iosub, C. Ş., Olăreţ, E., Grumezescu, A. M., Holban, A. M., & Andronescu, E. (2017). Toxicity of nanostructures—a general approach. In Nanostructures for Novel Therapy (pp. 793-809). Elsevier.
[21] Lo, W. H., Deng, F. S., Chang, C. J., & Lin, C. H. (2020). Synergistic antifungal activity of chitosan with fluconazole against Candida albicans, Candida tropicalis, and fluconazole-resistant strains. Molecules, 25(21), 5114.
[22] Mantravadi, P. K., Kalesh, K. A., Dobson, R. C., Hudson, A. O., & Parthasarathy, A. (2019). The quest for novel antimicrobial compounds: emerging trends in research, development, and technologies. Antibiotics, 8(1), 8.
[23] Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (англоязычная версия), 6(1 (20)), 35-44.
[24] Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of nanoparticle research, 10, 507-517.
[25] Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., ... & Sastry, M. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano letters, 1(10), 515-519.
[26] Ncube, N. S., Afolayan, A. J., & Okoh, A. I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. African journal of biotechnology, 7(12).
[27] No, H. K., Kim, S. H., Lee, S. H., Park, N. Y., & Prinyawiwatkul, W. (2006). Stability and antibacterial activity of chitosan solutions affected by storage temperature and time. Carbohydrate polymers, 65(2), 174-178.
[28] Noorian, S. A., Hemmatinejad, N., & Navarro, J. A. (2020). Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. International journal of biological macromolecules, 154, 1215-1226.
[29] Pasquina-Lemonche, L., Burns, J., Turner, R. D., Kumar, S., Tank, R., Mullin, N., ... & Hobbs, J. K. (2020). The architecture of the Gram-positive bacterial cell wall. Nature, 582(7811), 294-297.
[30] Peña, A., Sánchez, N. S., & Calahorra, M. (2013). Effects of chitosan on Candida albicans: conditions for its antifungal activity. BioMed research international, 2013(1), 527549.
[31] Raafat, D., Von Bargen, K., Haas, A., & Sahl, H. G. (2008). Insights into the mode of action of chitosan as an antibacterial compound. Applied and environmental microbiology, 74(12), 3764-3773.
[32] Raetz, C. R., Reynolds, C. M., Trent, M. S., & Bishop, R. E. (2007). Lipid A modification systems in gram-negative bacteria. Annu. Rev. Biochem., 76(1), 295-329.
[33] Richard, I., Thibault, M., De Crescenzo, G., Buschmann, M. D., & Lavertu, M. (2013). Ionization behavior of chitosan and chitosan–DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules, 14(6), 1732-1740.
[34] Sarwar, S. B., Khondokar, F., Islam, H., Ullah, M. A., Araf, Y., Sarkar, B., & Rahman, H. (2021). Assessing drug repurposing option for emerging viral diseases: concerns, solutions, and challenges for forthcoming viral battles. J. adv. biotechnol. exp ther, 4, 74-94.
[35] Sato, T., Ishii, T., & Okahata, Y. (2001). In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials, 22(15), 2075-2080.
[36] Sengupta, S., Chattopadhyay, M. K., & Grossart, H. P. (2013). The multifaceted roles of antibiotics and antibiotic resistance in nature. Frontiers in microbiology, 4, 47.
[37] Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology, 16, 1-24.
[38] South-East Asian (SEA), Regional Workshop on Extraction Technologies for Medicinal and Aromatic Plants, 2006.
[39] Sunagawa, M., Shimada, S., Zhang, Z., Oonishi, A., Nakamura, M., & Kosugi, T. (2004). Plasma insulin concentration was increased by long-term ingestion of guava juice in spontaneous non-insulin-dependent diabetes mellitus (NIDDM) rats. Journal of Health Science, 50(6), 674-678.
[40] Wainwright, M. (2008). Some highlights in the history of fungi in medicine–A personal journey. Fungal Biology Reviews, 22(3-4), 97-102.
[41] Xing, K., Zhu, X., Peng, X., & Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 35, 569-588.
[42] Zaharoff, D. A., Rogers, C. J., Hance, K. W., Schlom, J., & Greiner, J. W. (2007). Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 25(11), 2085-2094.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Articles in this journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. This license permits others to copy, distribute, and adapt the work, provided it is for non-commercial purposes, and the original author and source are properly credited.