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Abstract: Medical image fusion plays a crucial role in enhancing diagnostic accuracy by integrating complementary information 

from multiple imaging modalities. This study presents an optimized fusion framework that combines Contrast Limited Adaptive 

Histogram Equalization (CLAHE) for image enhancement, Non-Subsampled Contourlet Transform (NSCT) for multi-scale 

decomposition, guided filtering for edge preservation, and gradient-based weight computation for detail layer fusion. The 

proposed method effectively preserves critical structural details while minimizing information loss and fusion artifacts. 

Experimental results demonstrate that the method achieves a minimum improvement of 5.75% and a maximum improvement of 

38.23% in information retention, while fusion loss is reduced by 6.09% to 79.52%, and fusion artifacts are minimized by 10.00% 

to 96.97% compared to traditional approaches. The fused images exhibit superior visual quality, enhanced contrast, and improved 

feature preservation, making the method highly suitable for medical diagnosis and treatment planning. 

Keywords: Medical image fusion, Contrast Limited Adaptive Histogram Equalization, Non-Subsampled Contourlet Transform, 

visual quality, medical diagnosis and treatment planning 
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1. Introduction 

For a number of reasons, such as research, monitoring, 
precise illness diagnosis, and treatment planning, radiologists 
and other medical practitioners need images with great spatial 
and spectral resolution. Nevertheless, a single imaging 
modality sometimes falls short of offering complete 
information. For example, magnetic resonance imaging 
(MRI) is a better way to collect details about soft tissues than 
computed tomography (CT) images, which are more effective 
at highlighting bone structures. Similar to this, functional 
information is provided by positron emission tomography 
(PET) pictures, however they frequently lack accurate border 
features. Integrating data from several imaging modalities is 
crucial to overcoming these constraints. The process of image 
fusion creates a single, improved image with more diagnostic 
value by combining complimentary data from several imaging 
sources, including CT, MRI, and PET. In order to ensure that 
the fused image contains more significant information than 
any single source image, the technique pulls pertinent data 
from numerous input images. Applications of image fusion 
are found in many different domains, such as multi-focus 

image fusion, robotics, medical imaging, and satellite and 
aerial imaging [1-2]. 

There are various levels at which the fusion process 
might happen: To preserve as much detail as possible, pixel-
level fusion keeps a large portion of the original images' raw 
data. Different properties, including borders and textures, 
from several photos are combined in feature-level fusion. To 
reach a final judgment, decision-level fusion integrates the 
information that has been processed. Image fusion can be 
divided into two main categories: single-sensor fusion, which 
combines pictures taken under diverse circumstances (such as 
multiple focus or exposure), and multi-sensor fusion, which 
combines images from various sensors and is frequently 
employed in defense and medical imaging applications. In 
clinical settings, medical image fusion is essential, especially 
for diagnosis and therapy planning. It makes use of cutting-
edge methods from artificial intelligence, machine learning, 
image processing, computer vision, and pattern recognition. 
Numerous medical imaging technologies offer distinct 
benefits, including nuclear magnetic resonance (NMR) 
spectroscopy, CT, MRI, PET, Single Photon Emission 
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Computed Tomography (SPECT), Magnetic Resonance 
Angiography (MRA), and Ultrasonography (USG). 
Functional imaging techniques like PET, SPECT, and 
functional MRI (fMRI) offer important physiological insights, 
while structural imaging techniques like CT, MRI, and MRA 
provide high-resolution anatomical details[3-6]. 

Medical image fusion combines anatomical and 
functional imaging to create a single fused image from many 
input images, improving diagnosis accuracy, reducing 
redundant information, and lowering storage costs. For 
instance, by utilizing the advantages of both modalities, 
combining CT and MRI scans enhances the detection of 
anomalies. Similar to this, PET/MRI fusion helps with clinical 
diagnosis and treatment planning by integrating structural and 
functional data. Several important factors need to be taken 
into mind when using picture fusion techniques: All pertinent 
information from the initial images should be retained during 
the fusion process. Inconsistencies or artifacts added during 
fusion shouldn't deceive future image analysis or human 
viewers. The fusion technique should be reliable, consistent, 
and able to deal with missing data, noise, and registration 
problems. Medical imaging includes a variety of scan types, 
including CT, MRI, PET, and SPECT scans, all of which are 
essential for effectively identifying and evaluating patient 
diseases. These imaging modalities can be integrated using 
fusion techniques to produce a more thorough and insightful 
image, which will ultimately enhance clinical decision-
making [7-8]. 

2. Literature review 

Over the past few decades, numerous image fusion 
techniques have been introduced. For medical image 
integration, Agarwal et al. [9] proposed a hybrid method that 
merges wavelet transform (WT) and curvelet transform 
(CVT). In this approach, segmented input images undergo 
fusion in sub-bands using WT, while CVT divides these bands 
into overlapping tiles, effectively converting curves into 
straight lines. To achieve a more comprehensive fusion result, 
the tiles are blended using the inverse wavelet transform. The 
results indicate that this fusion strategy enhances image 
quality while reducing errors. Another advanced hybrid 
technique has been developed for multi-focus image fusion, 
combining principal component analysis (PCA) with 
stationary wavelet transform (SWT) [10]. SWT decomposes 
the final image into four sub-bands, capturing features from 
both the source and fused images. The PCA-based fusion 
algorithm is then applied to determine the most significant 
eigenvector for each sub-band, ensuring optimal image 
representation. By enhancing image information and reducing 
artifacts, this technique contributes to improved visual 
perception, as indicated by evaluation metrics. 

Bavirisetti & Dhuli [11] introduced an edge-preserving 
fusion method tailored for visible and infrared sensor images, 
aiming to enhance image quality while minimizing artifacts. 
Their approach utilizes anisotropic diffusion to separate 
source images into approximation and detail layers. The final 
fused image is computed using the Karhunen-Loeve transform 
and linear superposition of these layers, significantly 
improving contrast while preserving essential image details. 

To address limitations in conventional fusion methods, a 
multiscale fusion framework based on weighted least squares 
(WLS) optimization and visual saliency maps (VSM) was 
introduced [12]. This method decomposes input images into 
basic and detail layers using a multiscale filtering technique 
that integrates Gaussian and rolling guidance filters (RGF). It 
effectively reduces halo artifacts while preserving scale-
specific features, leading to a more visually natural fusion 
output. 

Another fusion framework, designed for multimodal 
images, employs fast spatial filtering [13]. It begins by 
assessing an image’s sharpness and contrast using gradient 
magnitude. A morphological closing operation is then applied 
to refine structures by filling gaps. The gradient magnitude is 
subsequently transformed into a weight map using a structure-
preserving filter, and a weighted sum rule is applied to 
generate the final fusion result. This method enhances realism 
in multimodal images. Several coupled fusion image 
techniques have been explored, such as coupled image 
factorization optimization and a modified flexible coupling 
approach [14], is focusing on matrix and tensor factorization 
optimization. Experimental results suggest that the CIF-OPT 
approach performs well in noisy conditions, allowing precise 
image reconstruction without compromising critical features. 
Earlier methods often suffered from issues like color 
distortion, blurring, and noise. 

To address these challenges, a Laplacian re-
decomposition (LRD) technique was proposed for multimodal 
medical image fusion [15]. This method integrates two key 
advancements: a Laplacian decision graph decomposition 
strategy, which enhances images by providing 
complementary and redundant details, and an overlapping and 
non-overlapping domain approach to manage different types 
of information. Goyal et al. [16] recently introduced a 
multimodal medical image fusion method designed to 
integrate low-resolution medical images with minimal 
computational complexity, improving target recognition 
accuracy for clinical applications. Similarly, Jose et al. [17] 
developed a multimodal approach using the Non-Subsampled 
Shearlet Transform (NSST) for applications in identity search. 
NSST, a multi-scale and multi-directional wavelet transform, 
has also been employed by Kaur and Singh [18] in a medical 
image fusion method that segments images into sub-bands. 
Features from input images are extracted using an advanced 
inception model, and decisions are optimized via multi-
objective differential evolution. The fusion process leverages 
coefficients of determination and energy loss to generate the 
final fused image using an inverse NSCT. Additionally, 
Srikanth et al. [19-22] explored brain tumor identification 
through image fusion by employing metaheuristic algorithms. 
Their study presents a fusion framework utilizing cross-
guided filters and convolutional neural networks (CNNs) to 
enhance medical image analysis. 

 

3. Proposed methodology 

The proposed fusion mechanism integrates CT and MRI 
images using an advanced multi-stage approach to enhance 
medical image clarity. Initially, both images undergo 
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Contrast-Limited Adaptive Histogram Equalization (CLAHE) 
for enhancement, improving local contrast. Next, Non-
Subsampled Contourlet Transform (NSCT) decomposes each 
image into base and detail layers. The base layers, which 
contain low-frequency information, are fused using an 
energy-based fusion technique to preserve structural details. 
Meanwhile, the detail layers, carrying high-frequency edge 
information, undergo further processing via a guided filter, 
which enhances edge preservation. The gradients of the 
filtered outputs are then used to compute a weight map, 

assigning fusion weights W1 and W2 for the detail layers. A 
weighted average fusion is applied to combine the detail 
layers effectively. Finally, the fused base and detail layers are 
reconstructed using inverse NSCT, generating the final fused 
image, which retains the structural clarity of CT scans and the 
soft tissue details of MRI scans for improved medical 
diagnosis. The process flow is illustrated in figure 1. 

 

 

Figure 1: Process flow of proposed fusion mechanism 

3.1 Image Enhancement using CLAHE 

The primary objective of this step is to improve the 
contrast of CT and MRI images to enhance feature visibility 
before fusion. CLAHE operates on small contextual regions 
of an image, applying histogram equalization while limiting 
contrast amplification. 

Given an image  𝐼(𝑥, 𝑦), CLAHE is applied as: 

𝐼𝐶𝐿𝐴𝐻𝐸(𝑥, 𝑦) = 𝐻𝐸(𝐼(𝑥, 𝑦)|𝑐𝑙𝑖𝑝 𝑙𝑖𝑚𝑖𝑡                                            

(1) 

Where 𝐻𝐸 denotes histogram equalization operation 

𝑐𝑙𝑖𝑝 𝑙𝑖𝑚𝑖𝑡 is a predefined threshold that prevents over-

enhancement. 

Each of the source images is subjected to CLAHE 

operation. These contrast-enhanced images are then 

subjected to NSCT decomposition. 

3.2 Multi-scale Decomposition using NSCT 

In contrast to wavelets, NSCT is a multi-scale, multi-

directional transform that preserves shift-invariance while 

capturing fine features and edge structures of an image. It 

has two primary phases called multiscale decomposition 

and multi-directional decomposition as shown in figure 2

. 
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Figure 2: Image decomposition using NSCT 

Non-Subsampled Pyramid (NSP): Decomposes the 
image into high-frequency (detail layers) and low-frequency 
(base layer) components. NSP uses iterative low-pass filtering 
to generate multiple frequency bands.  

Low pass filtered image at scale ‘𝑙′  is given as  
𝐵𝑙(𝑥, 𝑦) = 𝐵𝑙−1(𝑥, 𝑦) ∗ ℎ𝐿𝑃𝐹(𝑥, 𝑦)                 (2) 

High pass filtered image at scale 
‘𝑙′  is given as  𝐷𝑙(𝑥, 𝑦) = 𝐵𝑙−1(𝑥, 𝑦) − 𝐵𝑙(𝑥, 𝑦)                    

(3) 

Where ℎ𝐿𝑃𝐹(𝑥, 𝑦) is kernel of low pass filter and ‘∗ ′ 
denotes convolution operation. 

Non-Subsampled Directional Filter Bank (NSDFB): 
Decomposes high-frequency components into directional sub-
bands at different scales. 

The high-frequency components 𝐷𝑙  through the Non-
Subsampled Directional Filter Bank (NSDFB). This further 
decomposes them into 𝑘 directional sub-bands. 

𝐷𝑙,𝑘(𝑥, 𝑦) = 𝐷𝑙(𝑥, 𝑦) ∗ ℎ𝜃𝑘
(𝑥, 𝑦)                                                 

(4) 

Where ℎ𝜃𝑘
(𝑥, 𝑦) are directional filter kernels at 

orientations 𝜃𝑘 and 𝐷𝑙,𝑘(𝑥, 𝑦) is the detail component at scale 

𝑙 and direction 𝑘. 

3.3 Energy of an Image: This works considers local energy 
of base layers for fusing them and criteria to compute local 
energy and then fusing base layers using energy based weight 
maps is as given below: 

Let 𝑊𝑐 =
1

9
[
1 1 1
1 1 1
1 1 1

] is a 3x3 window used to compute 

the smoothened coefficients of an image. 

Then energy of an Image 𝐵𝑙(𝑥, 𝑦) is given as follows: 

𝐸(𝑥, 𝑦) = ∑ ∑ [𝐵𝑙(𝑥 + 𝑝, 𝑦 + 𝑞)]2
𝑞𝑝 𝑊𝑐(𝑝, 𝑞)    (5) 

3.4 Gradient computation of an image: 

 This work considers the guided filter output of a detail 
layer input to compute the gradient of an image. Guided filter 
is an edge preserving filter that mainly operates on four 
parameters called filtering input, guidance input, 
regularization parameter (𝜖) and radius (𝑟). Radius is used to 
decide the size of the kernel for image smoothening operation 
according to the relation 𝑁 = 2𝑟 + 1    while regularization 
parameter (𝜖) is used to decide whether the current pixel is 
edge pixel or non-edge pixel. Guidance input can be same as 
filtering input. If guidance input for filtering first image is 
taken from second image and vice-versa then the filter can be 
named as cross guided filter. More information on guided 
filter can be found at [23] 

For an image 𝑃, gradient can be computed as 𝐺 =

√(
𝜕𝑃

𝜕𝑥
)

2

+ (
𝜕𝑃

𝜕𝑦
)

2

                          (6) 

3.5 Algorithm of proposed fusion mechanism 

1. Let 𝐼𝐶𝑇  and 𝐼𝑀𝑅𝐼  are the two source images 
considered for fusion 

2. Each of the source images are subjected to CLAHE 
operation to get contrast-enhanced images, which are still 
labeled as 𝐼𝐶𝑇  and 𝐼𝑀𝑅𝐼  

3. Each of the source images from step 2 are applied for 
multi scale and multi directional decomposition using NSCT 
to provide respective base layers 𝐵𝐶𝑇 and 𝐵𝑀𝑅𝐼  and detail 
layers 𝐷𝐶𝑇  and 𝐷𝑀𝑅𝐼  and detail layers  

4. Compute energy of each base layer using equation 
(5) to give 𝐸𝐶𝑇(𝑥, 𝑦) and 𝐸𝑀𝑅𝐼(𝑥, 𝑦) 

5. From the energy information, compute weight maps 
of base layers as follows: 

𝑊𝐶𝑇(𝑥, 𝑦) =
𝐸𝐶𝑇(𝑥,𝑦)

𝐸𝐶𝑇(𝑥,𝑦)+𝐸𝑀𝑅𝐼(𝑥,𝑦)
           (7) 
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𝑊𝑀𝑅𝐼(𝑥, 𝑦) =
𝐸𝑀𝑅𝐼(𝑥,𝑦)

𝐸𝐶𝑇(𝑥,𝑦)+𝐸𝑀𝑅𝐼(𝑥,𝑦)
        (8) 

6. Generate fused base image using weighted 
combination of  base layers 𝐵𝐶𝑇 and 𝐵𝑀𝑅𝐼  

𝐵𝑓𝑢𝑠𝑒𝑑 = 𝑊𝐶𝑇(𝑥, 𝑦)𝐵𝐶𝑇 + 𝑊𝑀𝑅𝐼(𝑥, 𝑦)𝐵𝑀𝑅𝐼     (9) 

7. Apply cross guided filter on each detail and compute 
the fine details of the layers. 

𝑆𝐶𝑇 = 𝑔𝑢𝑖𝑑𝑒𝑑𝑓𝑖𝑙𝑡𝑒𝑟(𝐷𝐶𝑇 , 𝐷𝑀𝑅𝐼 , 𝑟, 𝜖)                         
(10) 

𝑆𝑀𝑅𝐼 = 𝑔𝑢𝑖𝑑𝑒𝑑𝑓𝑖𝑙𝑡𝑒𝑟(𝐷𝑀𝑅𝐼 , 𝐷𝐶𝑇 , 𝑟, 𝜖)                   (11) 

8. Fine details of CT image, 𝐹𝐶𝑇 = 𝐷𝐶𝑇 − 𝑆𝐶𝑇                          
(12) 

9. Fine details of CT image, 𝐹𝑀𝑅𝐼 = 𝐷𝑀𝑅𝐼 − 𝑆𝑀𝑅𝐼          
(13) 

10. Compute gradient of fine details using equation (6) 
to give  𝐺𝐶𝑇 and 𝐺𝑀𝑅𝐼   

11. From the gradient information, compute weight 
maps of detail layers as follows: 

𝑊1(𝑥, 𝑦) = {
1   𝑖𝑓  𝐺𝐶𝑇(𝑥, 𝑦) ≥ 𝐺𝑀𝑅𝐼(𝑥, 𝑦)  
0                                𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

      (14) 

𝑊2(𝑥, 𝑦) = 1 − 𝑊1(𝑥, 𝑦)                        (15) 

12. Generate fused detail layer at each scale and 
direction using weighted average fusion 

. 𝐷𝜃,𝑓𝑢𝑠𝑒𝑑 =
𝑊1(𝑥,𝑦)𝐷𝜃,𝐶𝑇+𝑊2(𝑥,𝑦)𝐷𝜃,𝑀𝑅𝐼

𝑊1(𝑥,𝑦)+𝑊2(𝑥,𝑦)
          (16) 

13. Reconstruct the fused image from 𝐵𝑓𝑢𝑠𝑒𝑑  and 

𝐷𝜃,𝑓𝑢𝑠𝑒𝑑  using inverse NSCT 

4. Results and discussion 

The experiments were conducted using multiple pairs of 
medical datasets to assess the effectiveness of the proposed 
method. However, for this study, only three pairs of CT-MRI 
medical datasets have been considered and presented, as 
illustrated in Fig. 3. These datasets are labeled as Dataset1, 
Dataset2, and Dataset3, respectively.These are the benchmark 
images collected from 
https://www.med.harvard.edu/AANLIB/home.html. To 
evaluate the performance and validity of the proposed method, 
three key fusion evaluation metrics are considered: Fusion 
Information Score (QAB/F), Fusion Loss (LAB/F), and 
Fusion Artifacts (NAB/F). These widely used metrics provide 
a comprehensive analysis of fusion efficiency. QAB/F 
measures the total information transferred from the input 
images to the fused image, ensuring effective fusion. LAB/F 
quantifies the cumulative loss of information during the fusion 
process, while NAB/F assesses the noise or artifacts 
introduced due to the fusion operation. For an optimal fused 
image, QAB/F should have a high value, indicating better 
information retention, whereas LAB/F and NAB/F should be 
minimal to ensure minimal information loss and artifact 
introduction. 

   

   

Figure 3: Datasets used for evaluation: Dataset 1(A and B), Dataset 2(C and D), Dataset 3(E and F) 

If A and B are input images and F is the fused image then 
the weighted sum of edge details quantified from both source 
images, denoted as QAF and QBF, is used to assess the overall 
fusion performance QAB/F. In this evaluation, the weight 
parameters WA and WB represent the perceptual significance 
of each pixel in the source images. The value of QAB/F ranges 
between 0 and 1, where 0 indicates complete loss of source 
information, while QAB/F = 1 signifies an ideal fusion with 
no loss of input information. The perceptual weights WA and 
WB are assigned based on the respective gradient strength 

factors GA and GB, providing a simple yet effective method 
to incorporate edge details in the fusion process. 

𝑄𝐴𝐵
𝐹⁄ =

∑ Qn,m
AF Wn,m

A +Qn,m
BF Wn,m

B
∀𝑛,𝑚

∑ Wn,m
A +Wn,m

B
∀𝑛,𝑚

       (17) 

Fusion loss, 𝐿𝐴𝐵
𝐹⁄ =

∑ 𝑟𝑛,𝑚([1−Qn,m
AF )Wn,m

A +(1−Qn,m
BF )Wn,m

B
∀𝑛,𝑚

∑ Wn,m
A +Wn,m

B
∀𝑛,𝑚

          (18) 
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𝑟𝑛,𝑚 = {
1   𝑖𝑓  𝑔𝑛,𝑚

𝐹 <   𝑔𝑛,𝑚
𝐴  𝑜𝑟 𝑔𝑛,𝑚

𝐹 <   𝑔𝑛,𝑚
𝐵

0                                𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

             

(19) 

 𝑁𝑛,𝑚 = {
2 − Qn,m

AF − Qn,m
BF    𝑖𝑓  𝑔𝑛,𝑚

𝐹 >   𝑔𝑛,𝑚
𝐴  𝑎𝑛𝑑  𝑔𝑛,𝑚

𝐵

0                                𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

     

(20) 

Fusion artifacts, 𝑁𝐴𝐵
𝐹⁄ =

∑ 𝑁𝑛,𝑚(Wn,m
A +Wn,m

B )∀𝑛,𝑚

∑ Wn,m
A +Wn,m

B
∀𝑛,𝑚

       (21) 

The fusion loss (LAB/F) quantifies the amount of detail 
lost during the fusion process. When QAF and QBF are less 
than 1, it directly indicates a loss of information from the 
source images. However, to accurately evaluate fusion loss, it 
is crucial to differentiate it from fusion artifacts, which may 
also lead to QAF and QBF < 1. The QAB/F approach utilizes 
gradient strength to compare the input and fused images. A 
fused image F is classified as containing artifacts if its 
gradient strength exceeds that of the input images. 
Conversely, if the gradient strength in F is weaker than in the 
inputs, it implies a loss of details. The total fusion loss is then 
computed as the perceptually weighted local fusion loss, 
represented by 1 − QAF and 1 − QBF for input images A and 
B, respectively. 

Fusion artifacts NAB/F refer to visual details introduced 
into the fused image during the fusion process that do not 
correspond to any features present in the input images. These 
artifacts are essentially erroneous data that can reduce the 
effectiveness of the fused image and may significantly impact 
certain fusion applications. Fusion artifacts can be analyzed 
using the adopted framework by identifying gradient details 
that appear in the fused image but are absent in both source 
images. A local estimate of fusion artifacts, often referred to 
as fusion noise (𝑁𝑛,𝑚), is computed as the fusion loss in 

regions where the fusion gradients are stronger than those in 
the input images. 

4.1 Qualitative analysis 

The brain datasets presented in Figure 3 are obtained 
using CT and MRI modalities. As mentioned earlier, CT 
images effectively capture bone structures and hard tissues, 
whereas MRI images provide detailed visualization of soft 
tissues in the brain. Therefore, the fusion process plays a 
crucial role in integrating complementary information from 
both modalities into a single image, ensuring comprehensive 
visualization for accurate diagnosis and treatment planning. 
Figure 4 presents the visual results of various fusion 
techniques applied to Dataset1, demonstrating the 
effectiveness of the proposed fusion method in preserving 
essential anatomical details. 

 

 

(a)Anisotropic 
diffusion 

 

(b) DWT 

 

(c) Guided Filter 
(GF) 

 

(d) Cross Bilateral 
Filter (CBF) 

 

(e) Quad tree 

 

(f) Proposed 
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Figure 4: Fusion results of Dataset 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Fusion results of Dataset 2 

 

 

(a)Anisotropic 
diffusion 

 

(b) DWT 

 

(c) Guided Filter 
(GF) 

 

(d) Cross Bilateral 
Filter (CBF) 

 

(e) Quad tree 

 

(f) Proposed 

Figure 6: Fusion results of Dataset 3 

Figure 4a–f presents the fused images obtained using 
various fusion algorithms, while Figure 3f demonstrates the 
fused image produced by our proposed method. The results 
indicate that the fused images generated using the Anisotropic 
Diffusion and DWT methods exhibit noticeable visual 
distortions and lack sufficient contrast, making them less 
effective. Through visual analysis, the fusion results of GF, 
CBF, and the Quadtree method appear visually better. 
However, in comparison to these methods, the proposed 
approach produces a more visually enhanced and undistorted 
fused image, effectively preserving essential structural and 

textural details from both CT and MRI images. The results of 
Dataset 2, depicted in Figure 5, indicate that the anisotropic 
diffusion method suffers from noticeable detail loss and poor 
fusion performance. The DWT and GF methods effectively 
integrate essential information, generating visually appealing 
results. The CBF and Quadtree methods further enhance the 
object region and improve the contrast between the object and 
background; however, the background resolution remains 
insignificant. In comparison to these techniques, the fused 
image obtained using the proposed method retains more visual 
details, ensuring better clarity and structural preservation. 

 

(a)Anisotropic 
diffusion 

 

(b) DWT 

 

(c) Guided Filter (GF) 

 

(d) Cross 
Bilateral Filter (CBF) 

 

(e) Quad tree 

 

(f) Proposed 
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Figure 6 presents the visual results of different fusion 
techniques for Dataset 3. The Guided Filter, Anisotropic 
Diffusion, and DWT algorithms struggle to effectively 
combine all complementary information from the paired 
source images. The Quadtree and CBF algorithms manage to 
retain essential details and produce visually appealing results. 
However, in comparison to other methods, the fusion result of 
the proposed approach delivers superior visual quality, 
preserving more information with enhanced contrast. Across 
all datasets, the fused images generated by the proposed 
algorithm exhibit better visual performance and comparable 
quantitative values compared to existing techniques. 
Additionally, experimental results on different image sets 

confirm that the proposed method has a faster runtime than 
various traditional benchmark fusion algorithms. 

4.2 Quantitative analysis 

Our method is quantitatively analyzed in contrast to 
different fusion methods using the fusion metrics QAB∕F, LAB∕F 
and NAB∕F. During the fusion process, QAB∕F indicates total 
information transfers from input images into fused image, 
LAB∕F indicates total information loss and NAB∕F indicates noise 
or artifacts added during fusion process. Any method should 
have higher value for QAB∕F and minimal values in case of LAB∕F 
and NAB∕F for better performance. Table 1 demonstrates the 
quantitative performance of different image fusion techniques 
as well as the proposed algorithm for all three image datasets. 

Table 1: Quantitative results several medical image datasets 

Method 

Dataset 1 Dataset 2 Dataset 3 

QAB/

F 
LAB/

F 
NAB/

F 
QAB/

F 
LAB/

F 
NAB/

F 
QAB/

F 
LAB/

F 
NAB/

F 

Anisotrop
ic diffusion 

0.65
9 

0.33
9 

0.00
2 

0.68
7 

0.31
0 

0.00
3 

0.81
7 

0.18
2 

0.00
1 

DWT 
0.62

4 
0.37

6 
0.00

0 
0.78

0 
0.22

0 
0.00

0 
0.83

5 
0.16

5 
0.00

0 

GF 
0.86

2 
0.13

7 
0.00

1 
0.76

3 
0.23

6 
0.00

1 
0.85

9 
0.13

5 
0.00

6 

CBF 
0.88

3 
0.10

6 
0.01

1 
0.75

4 
0.24

3 
0.03

3 
0.84

8 
0.12

7 
0.02

5 

Quadtree 
0.90

6 
0.08

2 
0.01

2 
0.80

5 
0.19

3 
0.00

2 
0.84

3 
0.15

1 
0.00

6 

Proposed 
0.91

5 
0.07

7 
0.00

8 
0.82

4 
0.17

5 
0.00

1 
0.88

3 
0.11

4 
0.00

3 

The proposed method achieves the highest QAB/F scores 
across all datasets (0.915, 0.824, and 0.883), demonstrating 
superior information retention. Quadtree and CBF methods 
also show good performance, particularly in Dataset 1, but fall 
short in other datasets. In contrast, anisotropic diffusion and 
DWT exhibit relatively lower QAB/F scores, suggesting they 
fail to preserve crucial information effectively. Fusion loss 
(LAB/F) measures the amount of information discarded during 
the fusion process, where lower values indicate better 
retention of source image details. The proposed method 
outperforms all other techniques by achieving the lowest LAB/F 
values across all datasets (0.077, 0.175, and 0.114), indicating 
minimal loss of important image features. Quadtree and CBF 
methods also perform reasonably well, particularly in Dataset 
1, but show slightly higher fusion loss in other datasets. On 
the other hand, DWT and anisotropic diffusion methods suffer 
from higher fusion loss, especially in Dataset 1 (0.376 and 
0.339, respectively), confirming their limitations in retaining 
essential image details. 

Fusion artifacts (NAB/F) represent unwanted distortions or 
noise introduced during the fusion process. Lower NAB/F 
values indicate fewer visual inconsistencies in the fused 
image. The proposed method achieves near-zero NAB/F scores 

across all datasets (0.008, 0.001, and 0.003), confirming its 
ability to generate high-quality fused images with minimal 
distortions. DWT consistently produces zero or near-zero 
NAB/F values, indicating that it minimizes noise but might also 
lose finer details. However, CBF and Quadtree methods 
introduce slightly higher artifacts, particularly in Dataset 2 
(0.033 and 0.002, respectively), which may negatively impact 
fusion quality. Overall, the proposed method demonstrates the 
best fusion performance by achieving the highest information 
retention (QAB/F), the lowest information loss (LAB/F), and 
minimal artifacts (NAB/F). While Quadtree and CBF methods 
also perform well, they introduce slightly higher fusion loss 
or artifacts in some cases. In contrast, DWT and anisotropic 
diffusion methods exhibit weaker performance, with lower 
information retention and higher loss. The results confirm that 
the proposed fusion technique is highly effective in medical 
image fusion, providing visually superior and quantitatively 
optimal results across all datasets. 

5. Conclusion 

The proposed fusion method demonstrates significant 
improvements across all datasets in terms of information 
retention, fusion loss reduction, and artifact minimization. 
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The experimental results show that the proposed method 
effectively preserves relevant details from source images 
while minimizing unwanted distortions and loss of critical 
information. In terms of information retention (QAB/F), the 
proposed method achieves a minimum improvement of 5.75% 
and a maximum improvement of 38.23% compared to existing 
fusion techniques. The reduction in fusion loss (LAB/F) ranges 
from a minimum of 6.09% to a maximum of 79.52%, 
indicating better preservation of structural details. 
Additionally, the suppression of fusion artifacts (NAB/F) shows 
improvements ranging from 10.00% to 96.97%, ensuring that 
the fused images maintain high visual quality without 
introducing unnecessary distortions. Overall, the proposed 
method provides a balanced fusion approach that enhances 
visual clarity, improves diagnostic reliability, and ensures 
minimal information loss. The results confirm its 
effectiveness in medical image fusion, making it a strong 
candidate for clinical applications where accurate and high-
quality image representation is essential. 
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